Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Encapsulation of metal nanoparticles within oxide materials has been shown as an effective strategy to improve activity, selectivity, and stability in several catalytic applications. Several approaches have been proposed to encapsulate nanoparticles, such as forming core‐shell structures, growing ordered structures (zeolites or metal‐organic frameworks) on nanoparticles, or directly depositing support materials on nanoparticles. Here, a general nanocasting method is demonstrated that can produce diverse encapsulated metal@oxide structures with different compositions (Pt, Pd, Rh) and multiple types of oxides (Al2O3, Al2O3‐CeO2, ZrO2, ZnZrOx, In2O3, Mn2O3, TiO2) while controlling the size and dispersion of nanoparticles and the porous structure of the oxide. Metal@polymer structures are first prepared, and then the oxide precursor is infiltrated into such structures and the resulting material is calcined to form the metal@oxide structures. Most Pt@oxides catalysts show similar catalytic activity, demonstrating the availability of surface Pt sites in the encapsulated structures. However, the Pt@Mn2O3sample showed much higher CO oxidation activity, while also being stable under aging conditions. This work demonstrated a robust nanocasting method to synthesize metal@oxide structures, which can be utilized in catalysis to finely tune metal‐oxide interfaces.more » « less
-
This work presents experimental evidence that confirms the potential for two specific zeolites, namely chabazite and faujasite (with a cage size ~2–13 Å), to adsorb small amounts of chloride from a synthetic alkali-activated cement (AAC) pore solution. Four synthetic zeolites were first exposed to a chlorinated AAC pore solution, two faujasite zeolites (i.e., FAU, X-13), chabazite (i.e., SSZ-13), and sodium-stabilized mordenite (i.e., Na-Mordenite). The mineralogy and chemical composition were subsequently investigated via X-ray diffraction (XRD) and both energy- and wavelength-dispersive X-ray spectroscopy (WDS), respectively. Upon exposure to a chlorinated AAC pore solution, FAU and SSZ-13 displayed changes to their diffraction patterns (i.e., peak shifting and broadening), characteristic of ion entrapment within zeolitic aluminosilicate frameworks. Elemental mapping with WDS confirmed the presence of small amounts of elemental chlorine. Results indicate that the chloride-bearing capacity of zeolites is likely dependent on both microstructural features (e.g., cage sizes) and chemical composition.more » « less
An official website of the United States government
